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Original article

Enhanced fault diagnosis of roller bearing
elements using a combination of empirical
mode decomposition and minimum
entropy deconvolution

Z Zhang, M Entezami, E Stewart and C Roberts

Abstract

This paper introduces a new signal processing algorithm for vibration-based fault detection and diagnosis of roller

bearings. The methodology proposed in this paper is based on the combination of two data-adaptive techniques

which are further enhanced through the use of an automatic feature identification mechanism. The new technique,

introduced as empirical mode envelope with minimum entropy, combines elements from the empirical mode decom-

position (EMD) and minimum entropy deconvolution (MED) approaches with an energy moment technique to improve

the feature selection stage of the EMD algorithm. This improvement allows the processing chain to identify early stage

roller bearing faults in noisier signals. The energy moment technique is used to automatically identify the most appro-

priate intrinsic mode function from the EMD process prior to the MED algorithm being applied. This is in contrast to

conventional approaches which tend to use the first mode or make selections based on traditional energy techniques.

The combination of the adaptive techniques of EMD and MED allows the development of an improved technique for fault

detection and diagnosis of signals. Combining these techniques with the energy moment approach allows further

improved fault detection in complex non-stationary conditions. The processing chain has been tested using data obtained

during laboratory testing. From the experimental results, it is shown that the new technique is capable of the detection

of early stage (minor) roller and outer race defects found in tapered-roller-bearings rotating at a variety of speeds and

noise scenarios.

Keywords

Condition monitoring, roller bearing, bearing inspection, data-adaptive techniques, empirical mode decomposition,

minimum entropy deconvolution, energy moment, empirical mode envelope with minimum entropy

Date received: 22 August 2015; accepted: 30 November 2015

Introduction

Rolling element bearings have widespread domestic
and industrial applications. They are extensively
applied in the transportation and manufacturing
industries, where they perform an important role. In
the vast majority of rotating machines, roller bearings
are one of the most critical mechanical components.

Defects in bearings may arise during operation or
in the manufacturing process. A quiet and smooth
operation of the bearings is essential to the correct
performance of the machinery.1 In 2011, an in-service
train operating on the Belfast to Dublin line suffered a
bearing failure which was confirmed when an axlebox
was found to be smoking at Connolly Station.2

Fortunately, there were no casualties in this accident
as the way-side hot axlebox detection equipment had
identified the failure causing the train to be stopped.
Having a suitable monitoring system to detect faults
in early stages of development can lead to the

prevention of catastrophic accidents and reduction
in maintenance costs. Vibration monitoring has been
established as the most common and reliable method
for the inspection of bearings. Several studies3–8 have
been conducted to explain the mechanism of vibration
and noise generation in bearings.

Normally, the vibration signal is collected from a
surface-coupled vibration sensor mounted on the
housing of the rotating machine. The working prin-
ciple of the vibration monitoring method is generally
based on the extraction of key frequencies
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corresponding to characteristics of the rolling elem-
ents. The bearing itself is a source of vibration and
noise due to its mechanical design and the interactions
between the rolling elements and races.9 The energy
contained in these vibrations usually then increases in
the presence of defects.8

As an element of a rotating system, a bearing itself
is a source of vibration and noise due both to its fun-
damental design and the interactions between the roll-
ing elements and races.9 However, the sources of
bearing vibration are not only limited to bearing oper-
ation or mechanical defects, but could be from the
system in which the bearing is mounted. Lynagh
et al.10 present an analytic model of bearing vibration
to clarify the various sources of bearing vibration,
both from inside of bearing and from the supporting
mechanical system. The main sources of bearing
vibration correspond to the rolling element character-
istic frequencies. These characteristic frequencies are:
the fundamental train frequency, the ball to outer race
frequency, the ball to inner race frequency and the
ball frequency. These characteristic frequencies will
be explained in section ‘Rolling-element characteristic
frequencies.’ Researchers working in the field of bear-
ing diagnostics traditionally use these characteristic
frequencies in the diagnosis of bearing faults.11,12

Another significant vibration source is the out-of-bal-
ance rotation caused by the variance between the
centre of the shaft axis and the geometric centre of
the bearings.10 Additionally, there are other sources of
bearing vibration regarded as being of secondary sig-
nificance. These include the waviness of rolling elem-
ents and the existence of abnormal ball elements and
races.10 These anomalies contribute to the vibration
spectrum of the bearing, but are of greater significant
at higher frequencies. When defects occur in a bear-
ing, the vibration energy at the corresponding charac-
teristic frequencies significantly increases.8

The non-stationarity of the bearing signal is
resulted by the random fluctuations of the bearing
signals during the experiment.13 Each bearing element
has specific characteristic frequencies, which is the
geometric property of the bearing. And this property
is widely used as a direct faulty information in the
bearing diagnosis, called characteristic defect frequen-
cies when it is used in the bearing fault diagnosis.14

Due to the non-stationarity of the bearing signal, it is
difficult to identify significant peaks at the character-
istic frequencies in the spectrum unless the defect is
predominant.15 Hence, preparation (pre-processing)
of the vibration data for standard envelope analysis
techniques5 is very important and can be complex.

Time synchronous average (TSA),16 envelope ana-
lysis, wavelet transform,11,43 the auto-regression
moving average (ARMA),12 cepstrum analysis17

and, more recently, spectral kurtosis13 are the most
widely used signal processing techniques for bearing
inspection and fault detection. These techniques are
based on a number of specific parameters which must

be correctly defined for the technique to operate most
effectively. For example, filtering techniques such as
wavelet transform, ARMA and other time-frequency
domain analysis techniques need to specify the central
frequency and bandwidth of their component filters.
Du et al.6 noticed that in some cases, particularly
when signal is surrounded in severe noise, it is difficult
to define parameters such as the central frequency and
bandwidth of the band-pass filter. In these cases, spec-
tral kurtosis can be used to identify the appropriate
central frequency and bandwidth.18 In contrast, the
technique proposed in this paper is categorised as an
adaptive technique. This means that parameters such
as the central frequency and bandwidth do not need
to be explicitly set. Elsha et al.19 suggest improved
effectiveness in identifying a naturally degraded bear-
ing under conditions of ‘relatively large background
noise’ when using an adaptive filter.

Adaptive techniques, also called data-driven tech-
niques, are applied as a pre-processing step because of
their ability to overcome the problem of periodic
noise being injected into the signal from one rotating
element by another. Empirical mode decomposition
(EMD) is one such adaptive technique. It is based
on the decomposition of the signal in order to gener-
ate less complex data sets.6 Minimum entropy decon-
volution (MED) is another adaptive signal processing
technique.20,21 It is effective at de-convolving impul-
sive sources from a mixture of signals.7,20,22–24

The EMD method is a time-domain processing
technique which can be applied to reduce the level
of noise within a signal.25,44 Conversely, MED can
be used to emphasise an impulsive element within a
signal.7 These two techniques can therefore be com-
bined to both reduce the noise within a signal and to
emphasise the components of the signal that are of
interest. Such processing has been applied in the
area of roller bearing diagnostics.26,27 In these cases,
the result of the first EMD iteration is used in the
processing chain. In other EMD applications, it is
common to consider multiple iterations of the process
and select the result demonstrating the greatest level
of energy.28 The method used to select the most
appropriate EMD iteration result is particularly
important when combining multiple processing tech-
niques. In addition to methods such as traditional
energy and energy entropy, the energy moment tech-
nique is particularly suited to signals with non-sta-
tionary characteristics.28

This paper presents a novel processing chain for
roller bearing vibration signal analysis. The system
uses a combination of empirical mode envelope and
minimum entropy techniques and so is referred to as
EMEME. EMEME is the combination of EMD, an
energy moment technique for iteration selection, and
MED. Used together; the elements in this processing
chain provide noise filtering and allow the extraction
of key signal features. The combined techniques are
shown to allow bearing fault detection in signals with
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high noise levels. In the upcoming section, the funda-
mentals of EMD are explained. Unlike time-fre-
quency processing techniques, EMD can decompose
a signal without historical data or pre-knowledge of
the signal. Next, the fundamentals of the energy
moment technique are explained. The energy
moment technique is capable of identifying the most
appropriate EMD iteration in order to choose the
most representative decomposed component of the
original signal. Later, the fundamentals of MED are
explained. In this case, MED is used to emphasise the
impulsive element within a signal. Subsequently, the
combined EMEME process is explained using a flow
chart to demonstrate the working procedure. Roller
bearing faults and geometry are discussed, followed
by experimental introduction, testing results and ana-
lysis in a later section. The verification of the pro-
posed technique and the novel enhancement are
demonstrated and analysed in a sub-section.
Conclusions are drawn in the last section.

Fundamentals of EMD

EMD is an adaptive technique, also known as a data-
driven technique. It was originally proposed by
Huang et al.29; encouraging results of the application
of EMD to signals obtained from rotational mechan-
ical systems are reported in various studies.25,30,31 The
EMD method decomposes the signal into different
sub-signals, which are the intrinsic mode functions
(IMFs). A detailed introduction to the EMD
method can be found in Huang et al.29

EMD focuses on extracting the stationary points of
signal.26 Assuming a generic signal x tð Þ, the maxima
and the minima of which are interpolated by means of
a spline to obtain MaxðtÞ and MinðtÞ respectively.

These two curves are able to represent the envelop
of x tð Þ. The average signal from these two splines is
called mean tð Þ: x1 tð Þ, shown in equation (1), can be
calculated by subtracting the mean tð Þ from the ori-
ginal signal x tð Þ

x1 tð Þ ¼ x tð Þ � meanðtÞ ð1Þ

If the resulting signal x1 tð Þ is an intrinsic mode func-
tion (IMF), the algorithm ends. Otherwise, the previ-
ous steps are repeated as per equation (2). This
iterative procedure is known as the ‘sifting process.’

xn tð Þ ¼ xn�1 tð Þ � meann�1ðtÞ ð2Þ

To be an IMF, the signal must meet the following
requirements:

1. The number of extrema in xn tð Þ equals the number
of zero crossings.

2. The mean between the local maxima and local
minima splines in xn tð Þ is equal to zero at any
point.

In the sifting process, MaxðtÞ, MinðtÞ and mean tð Þ are
recomputed so that mean tð Þ can be subtracted from
the previous signal xn�1 tð Þ. When the first IMF, C1ðtÞ,
is extracted the sifting process stops.

Then, C1ðtÞ is subtracted from the original signal
x tð Þ

r1 tð Þ ¼ x tð Þ � C1ðtÞ ð3Þ

The signal r1 tð Þ is treated as the original signal for the
second IMF calculation by means of the sifting
process

r2 tð Þ ¼ r1 tð Þ � C2ðtÞ ð4Þ

The EMD algorithm generates the final IMF, CNðtÞ,
when the residual signal rN tð Þ is a constant or mono-
tonic function. The threshold to stop the procedure is
described as

� rN tð Þð Þ5 �stop ð5Þ

where � rN tð Þð Þ is the residual signal of rN tð Þ and �stop is
the threshold to stop.

The IMFs extracted by the EMD algorithm can be
considered to be sub-signals of the original signal.
These sub-signals expose components that can be
used for latter signal processing.

IMF selection by energy moment

EMD can be used to identify a number of IMFs cor-
responding to the key sub-signals within an original
signal. Some of these IMFs will be more appropriate
for use in further processing than others. There are a
number of methods to identify the most appropriate
IMF such as the rotating frequency phenomena of roll-
ing elements,26 energy of the IMFs3 and energy entropy
of the IMFs.32 However, these methods disregard the
distribution features of each IMF signal’s energy.28

Therefore, the extracted components of the signal
may not accurately represent the nature of the fault.

In order to enhance the performance of feature
extraction algorithms, IMF energy moment can be
used as a method for the selection of a suitable IMF
to represent the most important elements of the ori-
ginal signal. The energy moment technique calculates
the energy distribution of each IMF in the time-
domain. Bin et al.28 illustrates the effectiveness of
the energy moment technique by evaluating it using
multiple sets of simulated signals.

Equation (6) is the energy moment calculation
(EMÞ for continuous signals and equation (7) is used
for discrete signals: a series of IMFs generated by
EMD is IMFiðtÞ, i¼ 1, 2, 3,. . .. . .

EMi ¼

Z t

�jIMFiðtÞj
2dt ð6Þ

Zhang et al. 3
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EMi ¼
Xm
k¼1

k ��tð ÞjIMFiðk ��tÞj2 ð7Þ

where �t is the sampling period; m is the total number
of data samples.

Then, the normalised eigenvector of the signal
based on the energy moment is

E ¼ E1, E2, E3, . . . . . . ,Em½ �=
Xm
i¼1

Ei ð8Þ

where each element of E corresponds to the percent-
age of the energy moment of the IMFiðtÞ. In this work,
the IMF with the highest energy moment is then
selected as the representative IMF.

Fundamentals of MED

The minimum entropy deconvolution (MED) algo-
rithm improves the peakedness of the signal by
emphasising the transient components. It aims to
reduce the randomness of a signal by minimising its
entropy.

A generic signal g tð Þ can be considered as two com-
ponent parts as per the following equation

gðtÞ ¼ hðtÞ � wðtÞ þ �ðtÞ

% %

Part 1 Part 2

ð9Þ

Part 1 is the convolution between the component
related to the system behaviour h tð Þ and its excita-
tion w tð Þ. Part 2 represents randomly distributed noise.

When the signal g tð Þ passes through a filter f ðtÞ, it is
represented as u tð Þ

u tð Þ ¼ g tð Þ � f tð Þ ¼ h tð Þ � w tð Þ � f tð Þ þ � tð Þ � f ðtÞ

ð10Þ

This can also be presented in the discrete domain

u nð Þ ¼ g nð Þ � f nð Þ ¼
XM�1
i¼1

f ið Þvðn� 1Þ ð11Þ

with n¼ 0,1,2,. . ., TþM� 2; where T is the length of
the convolution between the signals, and M is the
length of the filter.

Key to this stage of the MED process, as discussed
in Gonzalez et al.,21 is choosing the value of the filter
length (M). In the paper by Pennacchi et al.,33 the filter
length is selected based on the characteristic period of
the system (i.e. for rotating components the filter
length chosen to be the same as the period of rotation).

The objective of this filtering is to retain (or maxi-
mise) the contribution from the first part of the signal,
while minimising that from the components asso-
ciated with the noise. The result of this action is
that the signal entropy is reduced. By iteratively
repeating the process the algorithm identifies the

output u nð Þ that has an optimal match to h tð Þ, and
thereby minimises the signal entropy. The signal
entropy is evaluated using the Varimax norm20

Vðu tð ÞÞ ¼
XP

j¼0
u4ð j Þ

.�XP

j¼0
u2 jð Þ

�2
ð12Þ

with P¼TþM� 2.
MED is particularly effective at separating fre-

quent impulses resulting from shocks generated by
localised defects.7

Empirical mode envelope with
minimum entropy

The EMEME method proposed in this paper results
from the combination of the EMD and MED algo-
rithms with the use of the energy moment technique
for IMF selection. The first stage is to apply the EMD
algorithm to the experimental signals, to generate a
series of IMFs, and then to select the IMF with the
greatest energy moment value as described in section
‘IMF selection by energy moment.’ The second stage
is then to apply the MED algorithm to minimise the
signal’s entropy, thereby emphasising key periodically
occurring impulsive features.

In roller bearing diagnostics, the signals of interest
are generally analytic signals, i.e. in the frequency
domain representation any negative components can
be disregarded. Such signals are affected by slippage
occurring between the rolling elements and the races
due to the presence of localised faults.26 The analytic
signal of the representative IMF, rn0ðtÞ, is calculated
and then used in the MED algorithm.

The Hilbert transform of the representative IMF
rn0ðtÞ is

H rn0 tð Þ
� �

¼
1

�

Z 1
�1

rn0ðt
0Þ=ðt� t0Þdt0 ð13Þ

The analytic signal of the representative IMF rn0ðtÞ
34

is

z tð Þ ¼ rn0 tð Þ þ jH rn0 tð Þ
� �

¼ aðtÞexpð j’ðtÞÞ ð14Þ

where

a tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn0 tð Þ

2
þ H rn0 tð Þ

� �2q
ð15Þ

’ðtÞ ¼ arctanðH rn0 tð Þ
� �

=rn0 tð ÞÞ ð16Þ

In which a tð Þ is the envelope, and ’ðtÞ is the angular
characteristic of the analytical signal.

The behaviour of the envelope a tð Þ is important as
it preserves the energy of the measured signal. The
MED process is applied to this envelope.

Figure 1 demonstrates the stages involved in apply-
ing the EMEME technique to a vibration signal.

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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Typical bearing faults

Bearing defects can be caused by manufacturing
errors, improper installation or abrasive wear, such
as surface roughness, waviness, misalignments and
off-size rolling elements.4,9,35–37 Other types of bearing
faults are localised, such as cracks, pits and spalls on
the rolling surfaces. Defects are generally categorised
into four types: roller defect, damaged cage, inner and
outer race faults.38

A number of faults were artificially induced
into the automotive bearings used in this
study. Examples of these induced faults are presented
here:

1. Roller fault; scratch and spalling of the roller,
shown in Figure 2(a).

2. Outer race fault; scratching over approximately
30% of the outer race circumference, shown in
Figure 2(b).

3. Damaged cage and roller fault; a small scratch on
the roller along with a broken section of the cage,
shown in Figure 2(c).

The particular bearing faults used in this study are
characterised as shown in Table 1.

A basic requirement of any bearing condition
monitoring system is to identify faults, but not neces-
sarily to categorise them. More advanced bearing
monitoring systems, such as those presented in this

paper, allow different bearing faults to be individually
identified and categorised.

Rolling-element characteristic
frequencies

Envelope detection or amplitude demodulation is a
technique that extracts fault-related frequency com-
ponents resulting in a modulated signal. The fast
Fourier transform (FFT) spectrum of the modulated
signal is known as envelope analysis.

An impact event appears within the signal when
either a rolling element strikes a race fault, or a
fault on a rolling element strikes a race. The geometric
relationships between the roller and race components
determine the timings of these impacts, and thus the
characteristic fault frequencies of the bearing. Each
different type of fault (as previously described) is illu-
strated by a different characteristic fault frequency.
The presence of faults can also increase the vibration
energy.

For a bearing with a stationary outer race, the
following equations define the characteristic
frequencies.1

FTF, fundamental train frequency, fault on the
cage or mechanical looseness

fc ¼
!r

2
1�

RD

PD
cos�

� �
ð17Þ

Extract the faulty characteristic frequencies and
identify the fault type

Input vibration signal x(t)

Apply EMD to x(t)

Extracting IMF components
imf(i), i=1,2,3,…,n

Choose the representative IMF component by
energy moment

The representative IMF
component, imf(k) is chosen

Envelope using Hilbert Transform

Analytic signal is generated; its
envelope a(t) is used for the

further processing

Apply MED to a(t) to minimise
entropy of the signal and outstand the spikes

Kurtosis value increased signal
k(t) is obtained

FFT of the analytical signal

Start

End

x(t)

imf(i)

a(t)

k(t)

Figure 1. The flowchart of the proposed method process.
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BPFO, ball passing frequency outer race, local
fault on outer race

fbo ¼
R

2
!r 1þ

RD

PD
cos�

� �
ð18Þ

BPFI, ball passing frequency inner race, local fault
on inner race

fbi ¼
n

2
!r 1�

RD

PD
cos�

� �
ð19Þ

BFF, ball fault frequency ¼ 2 * BSF, ball spin
frequency, local fault on rolling element

fbf ¼
PD

2RD
!r 1�

RD

PD
cos�

� �� �2

ð20Þ

where fc, fbo, fbi, fbf are the frequency of the item (Hz);
!r is the shaft rotation rate (rev/s) or (Hz); RD is the
roller diameter (m); PD is the mean roller race diam-
eter (m); � is the contact angle (rad); and R is the
number of rollers.

Experiments and testing results

Experiment set-up

All the data were collected in the BCRRE laboratory
at the University of Birmingham. In order to carry
out the laboratory tests on the roller bearings a test
rig was built, this is shown in Figure 3.

The key features of the test rig are as follows:

1. A rotating shaft which is mounted on two support
bearings and can be loaded with two different
bearing sizes: automotive (up to ¼ tonne), and
railway (up to 5 tonnes).

2. Single 2.2 kW electric motor to drive the shaft, via
a belt for isolation, at varying speeds.

3. A hydraulic jack under each test bearing to apply
a vertical load.

4. Pressure gauges (analogue and digital) to measure
and monitor the applied load.

5. A tachometer to measure the rotational speed of
the shaft.

The type 801023AB automotive tapered roller
bearing are used as the unit under test. The specifica-
tions of the test bearing are shown in Table 2.

Experiments were carried out at various speeds to
support the evaluation of the processing techniques.
At the development stage, preliminary 500 r/min
and 1000 r/min tests were undertaken; for the main
tests a wider range from 250 r/min to 1000 r/min was
used. The characteristic frequencies for the test bear-
ing are shown in Table 3 for each of the different test
speeds.

Testing results

This section describes the stages of application of the
EMEME algorithm to the recorded data.

Feature extraction using EMEME
.

1. EMD applied to experimental signal

Figure 2. Typical faults of tapered-roller-bearing.

Table 1. Bearing test fault conditions.

Bearing

test ID Description

F0 Good condition, no introduced defects.

F1 Minor damage (single small shallow fault) to one small area on each outer race, consisting of surface roughening by

means of an electrical discharge engraver. Fault length 1.7% of circumference.

F2 Minor damage to one small area of one roller in each cage, again consisting of surface roughening by electrical

discharge engraver. Fault length 10% of circumference.
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In this section, EMD is applied to signals
recorded from a healthy bearing at a speed of
500 r/min. By applying EMD, a series of 20 IMFs
were extracted. IMF components extracted earlier in
the process have a broader range of frequencies, and
therefore cover a wider range of the frequency com-
ponents from the original broadband signal. The first
five IMFs along with the original signal are shown in
Figure 4.

Figure 5 shows the original signal, and the IMFs
and residuals arising from the application of EMD.
The original signal and the residuals (obtained by
removing the IMF from the original) are shown in
the left hand column while the IMFs themselves are
shown on the right.

The IMF component with the greatest apparent
similarity is not always selected as the representative
IMF because the relevant part of the signal can some-
times be masked by noise. The EMD method decom-
poses the signal into different oscillation modes in the
time domain, defined by the time between the local
maxima or minima.39 Hence, the IMF components
extracted earlier in the process are not always those
with the greatest energy due to the alignment of the
IMF with the periodicity of the fault.

The representative IMF should have the highest
time-related energy, earlier introduced as the energy
moment. The energy moment of each IMF signal is

used to select the representative IMF. In this case,
IMF(2) is chosen to be the representative IMF.

2. MED applied to the representative IMF envelope

MED is applied to the representative IMF of F1
and F2 and the results are shown in Figures 6 and 7.

A non-dimensional quantity that measures the
relative ‘peakedness’ of a signal relative to the
Gaussian distribution (known as kurtosis) is calcu-
lated and shown in the figures to demonstrate the
effectiveness of the MED. For normally distributed
data, such as the distribution of the natural vibrations
of a healthy bearing,40 the kurtosis value is 3. For
signals with repetitive impulsive forces, the kurtosis
can be much greater. Although kurtosis cannot iden-
tify a particular type of defect, it can be used to indi-
cate if there is defect present in a bearing. In this case,
the vibrations resulting from the motion arising from
the irregularities in the bearing’s internal components
can lead to a significantly increased kurtosis value. In
Figures 6 and 7, the filter length of the MED is set to
correspond to the bearing’s rotational speed (in Hz).
The figures show that the kurtosis values of the signals

Vibration sensor

Hydraulic jack

DC drive

Test bearing

Figure 3. Bearing test rig.

Table 3. Example of characteristic frequencies of the

bearings.

Scaled

bearing (Hz)

Speed (r/min)

250 300 400 500 600 1000

FTF 1.8 2.2 2.9 3.6 4.4 7.3

BPFO 38.4 46.1 61.5 76.9 92.3 153.8

BPFI 49.05 58.8 78.5 98.1 117.7 196.2

BFF 32.9 39.5 52.7 65.85 79 131.7

FTF: fundamental train frequency; BPFO: ball passing frequency outer

race; BPFI: ball passing frequency inner race; BFF: ball fault frequency.

Table 2. Bearings specification.

Value

PD 42.5 mm

RD 5.3 mm

R 21

b 13.8�
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Figure 5. EMD procedure of the healthy bearing.
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filtered by MED increase, this indicates that the spikes
related to the bearing faults are enhanced.

Verification of EMEME results. Frequency domain ana-
lysis is used to verify the EMEME result. The results
of the healthy and faulty bearings are shown in this
section where the feasibility of the method is also
evaluated under induced noisy conditions. Vibration
data recorded from faulty bearings with minor
damage on the outer race and on the roller (F1 and
F2), spinning at speeds from 250 r/min to 1000 r/min,
are used to evaluate the method.

The results of the lowest rotational speed of
250 RPM (i.e. 4.17Hz) and the highest speed of
1000 r/min (i.e. 16.7Hz) are presented. The former
case illustrates the bearing diagnosis results when
the bearing vibration is weak and the latter shows
the results when the vibration noise is high. An FFT
has been applied to the signals obtained with
EMEME. The spectrums are shown in Figures 8
and 9. The equivalent results from F0 healthy bearing
are also presented for comparison purposes, in order
to clearly indicate the abnormal behaviour of the
faults.

In the spectrums presented here, the arrows indi-
cate the calculated principle bearing frequencies (see
section ‘Rolling-element characteristic frequencies’)
for both cases. A certain amount of out-of-balance
rotation can be clearly seen in the two graphs,

which is the primary unbalance at the shaft speed
(!r).

10 The bearing inherent frequencies have also
been calculated and are shown in the two graphs.
These are the fundamental train frequency (fc), the
ball frequency of the outer race (fbo), the ball fre-
quency of the inner race (fbi) and the ball fault fre-
quency (fbs).

Comparing the healthy results for the two cases;
the difference between the average background noise
level and the characteristic frequencies shown in the
250 r/min situation is of greater magnitude than in the
1000 r/min scenario. This implies a greater level of
background noise in the measurement taken at
higher speed.

Comparing the healthy (F0) and faulty bearings
(F1 and F2); the out-of-balance level, indicated by
the shaft speed, is always the highest component in
the spectrum of F0, while the appropriate fault fre-
quencies (ball frequency of the outer race for F1 and
ball fault frequency for F2) are highlighted in their
respective spectrums. This demonstrates that the
EMEME approach is capable of extracting and
emphasising the faulty information from defective
bearing signals without pre-knowledge of the fault
type.

The peaks numbered 1, 2, and 4 in Figures 8 and 9
correspond to the frequencies of the principle 1st har-
monic of the shaft speeds. The peaks numbered 3 and
5 are at the frequencies of the principle 1st harmonic

Figure 6. Effect of MED iterations when applied to F1 faulty vibration signal.
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Figure 7. Effect of MED iterations when applied to F2 faulty vibration signal.
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of the respective fault frequencies (fbo for the bearing
with the damaged outer race, and fbs for the bearing
with the damaged roller). This demonstrates that the
EMEME approach can be used to identify not only
the fundamental frequency, but also the first har-
monic components of fault information in the fre-
quency domain.

Comparison to conventional HFRT. The envelope analysis
technique discussed in the introduction of this paper is
also known as the high frequency resonance technique

(HFRT). HFRT operates by applying specific filters to
emphasise particular frequency bands of interest, usu-
ally above 4 kHz, within the signal.1,5 Low amplitude,
high frequency, components are then shifted to a lower
frequency range where the modulating signal can be
extracted. An FFT is then applied to the resulting sig-
nals to give a final frequency characterisation.

In this section, traditional HFRT is compared to
the new EMEME method presented in this paper.
Figure 10 shows the results of applying the HFRT
(left) and EMEME (right) processing methods to
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Figure 9. FFT envelope of healthy and faulty bearing spinning at1000 r/min (Top) healthy bearing (Middle) outer race damaged

bearing (Bottom) roller damaged bearing’s EMEME algorithm processed data.
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Figure 10. Conventional envelope method (left) vs. EMEME (right) at 500 r/min no added noise.
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data recorded from the test rig using a bearing with an
induced outer race fault rotating at 500 r/min.
Normalised acceleration is used to describe the amp-
litude of each frequency component, in order to sim-
plify comparison of the waveforms. Both methods
clearly identify the primary fault frequency and the
ball frequency of the outer race (fbo). The HFRT
method also identifies the next three harmonics,
while the EMEME technique highlights the 1st har-
monic more clearly, but then does not indicate the
higher harmonics as well.

The comparison presented in Figure 10 shows the
use of both HFRT and EMEME in low noise (labora-
tory) conditions. In order to make the test more rep-
resentative, and also to further challenge the
algorithms, artificial Gaussian noise was introduced
into the signals using MATLAB prior to processing.41

The level of noise inserted into the signal generated a
signal-to-noise ratio (SNR) of 5. The results of the
algorithms applied to the noisy signal are shown in
Figure 11 with the HFRT on the left and the
EMEME on the right.

With the addition of the noise the standard HFRT
processing performs less well, particularly in relation to
the1st harmonic which is barely visible in the spectrum.
The EMEME technique, however, still clearly shows
the primary fault frequency with the 1st harmonic, as
well as a further four harmonics to a lesser extent.

Increasing the level of noise introduced into the
signals from an SNR of 5 to an SNR of 1.5 fur-
ther increases the challenge to the algorithms.
The results, shown in Figure 12, indicate that the
noise floor in the spectrum resulting from the
HFRT processing is increased to a point where only
the fundamental fault frequency is clearly identifiable.
Conversely, even with this increased level of noise, the
EMEME processing still provides clear indications
of both the fundamental fault frequency and the
1st harmonic.

The enhancement of energy moment feature extraction

method. To illustrate the advantages of using the
energy moment technique to select the representative
IMF, a comparison has been made between it,
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Figure 11. Conventional envelope method (left) vs. EMEME (right) at 500 r/min with noise SNR of 5.
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traditional energy evaluation methods,34 and selecting
just the first IMF as used in Ricci et al.26

Taking the case of the F1 faulty bearing as an exam-
ple; a chart showing the results of the traditional energy
evaluation method and the energy moment technique
for different IMFs is presented in Figure 13. The chart
shows the distribution of the amplitude values for the
top 10 IMFs, calculated as per equations (7) and (8) in
the case of the energy moment and as per Yu et al.34 for
the traditional energy technique.

In both cases, the second (rather than the first)
IMF is found to be that with the highest value.

To further evaluate the selection of the second IMF
(as selected by the energy moment feature extraction
method) compared to the first IMF, FFTs of the pro-
cessed signals are shown in Figure 14. The noise level
present in the spectrum corresponding to the chosen
IMF, IMF(2), is reduced and hence the shaft speed
and the 2nd harmonic of the fault frequency are more
clearly visible.

For this example, and with minimal noise in the
signal, Figure 13 shows only a very minor difference
in amplitude between the 2nd IMF identified using the
energy moment technique and the traditional energy
approach. This difference is greater in scenarios with
lower signal to noise ratios.

In order to evaluate the use of the energy moment
IMF selection technique for noisy environments; data
was collected from the same faulty bearing installed in
a complex system including a Radicon Series J gear-
box with a 4.94:1 ratio.42 Figure 15 shows the signals
recorded from both the faulty bearing (left), and the
faulty bearing coupled to the gearbox (right).

Figure 16 shows the distribution of the amplitude
values of the top 10 IMFs for the traditional energy
and energy moment evaluation techniques in this case.
In this case, with increased signal noise, the IMF
selected by the two techniques is different. The
energy moment technique selects the second IMF,
while the traditional energy approach selects the
fourth.

As with the original example, the FFTs of the pro-
cessed signals are shown in Figure 17. All of the three
techniques considered identify a key vibration
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resulting from and outer race fault, the ball frequency
of the outer race (fbo). The graph on the left presents a
comparison between the energy moment feature
extraction method and selecting only IMF(1) (the
technique used in Ricci et al.26). The graph on the
right shows a comparison between the energy
moment and traditional energy methods for IMF
selection.

In the figure, the greatest fault frequency amplitude
is seen to be in the envelope generated from the IMF
selected using the energy moment processing tech-
nique. The traditional energy approach generates
greater peak values than those generated from IMF(1).

Conclusions

This paper has described the development and appli-
cation of a new algorithm for vibration-based bearing
diagnostics to be applied to non-stationary experimen-
tal signals. The technique, referred to as empirical
mode envelope with minimum entropy, combines elem-
ents of both the empirical mode decomposition and
minimum entropy techniques with energy moment
based automatic IMF selection routines in order to
improve fault feature identification. The improved
functionality of the technique has been demonstrated
through its application to data collected from healthy
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bearings, bearings with roller faults, and bearings with
race faults; both in isolation and coupled to more com-
plex systems, and at a range of rotational speeds.

The EMEME technique has been applied to the
data from the test rig to detect faults and to generate
frequency spectra which demonstrate the key frequen-
cies associated with each different fault type. The clar-
ity of these elements of the spectra is indicative of the
improved performance of the technique. Tests have
been carried out with particularly minor levels of
the selected faults in order to demonstrate the tech-
nique’s ability to detect early stage (minor) symptoms.
Additional comparisons with conventional envelope
processing and EMD/MED techniques using a static-
ally selected IMF have also been carried out. This has
shown that the proposed technique is also suitable for
use in complex systems and noisy environments, and
provides a clearer identification of faults within the
results spectra.

In addition to the suitability of the EMEME tech-
nique for identifying the fundamental fault frequency
in a complex system, results presented in this paper
indicate improved capability for the identification of
harmonics associated with this fundamental fault fre-
quency. These harmonics can be used to improve the
reliability of the classification of a fault associated
with the bearing.

Highlights

. A new vibration-based signal processing algorithm
for fault detection and diagnosis of roller bearing is
introduced.

. A deep investigation of the combination of two
data-adaptive techniques which are empirical
mode decomposition (EMD) and minimum
entropy deconvolution (MED) is demonstrated in
this paper. The energy moment technique is
applied in the most appropriate intrinsic mode

function (IMF) selection, prior to the MED algo-
rithm being applied.

. The new technique is verified using the experimen-
tal data of different fault types at a range of speeds
using a bespoke test facility housed at the
University of Birmingham.

. The new technique is compared with the conven-
tional method, high frequency resonance technique
(HFRT), to demonstrate the enhancement.

. The stage of the most appropriate IMF selection in
the new technique is compared with the other selec-
tion methods, to demonstrate the enhancement.
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Appendix

Notation

aðtÞ envelope

BPFO (fbo) ball passing frequency outer race

BPFI (fbi) ball passing frequency inner race

BFF (fbf) ball fault frequency

BSF (fbs) ball spin frequency

CðtÞ intrinsic mode function

E percentage of the energy moment in term of

the series

f frequency

f ðtÞ filter function

FTF (fc) fundamental train frequency

gðtÞ a generic signal

hðtÞ system function

H Hilbert transform

k index of data sample

m total number of data samples

M length of the filter

MaxðtÞ maxima in term of time

MinðtÞ minima in term of time

meanðtÞ average in term of time

n number of iteration

n0 index of the representative IMF

N final number of iteration

PD mean roller race diameter

rðtÞ residual signal

R number of rollers

RD roller diameter

t time

T length of the convolution between signals

uðtÞ filter output

V vatimax norm

wðtÞ excitation

xðtÞ a generic signal

zðtÞ analytic signal

� contact angle

� threshold

�t sampling period

�ðtÞ randomly distributed noise

!r shaft rotation rate

’ðtÞ angular characteristic
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